
[Dubey, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [70]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

COMPARATIVE STUDY: WATERFALL V/S AGILE MODEL
Ms.Akshita Dubey*, Ms.Amisha Jain, Ms.Aditi Mantri

* Acropolis Institute of Technology and Research, Indore (M.P), India

Acropolis Institute of Technology and Research, Indore (M.P), India

Acropolis Institute of Technology and Research, Indore (M.P), India

ABSTRACT
This investigation deals with a vital and critical matter in computer world. It is concerned with the development

process of software. This target can be achieved with the help of various software development models available. The

development models are tools that allow us to correctly follow the steps to create software that meets a business need.

There are different SDLC models with their respective pros and cons. In IT world all these methodologies are

incorporated .Any model is implemented by taking in context every aspect and proper confidentiality and integrity.

Availability controls are planned and built into software application right through the software lifecycle. Currently,

the use of, awareness in, and controversy about agile methodologies have realized dramatic growth. We have described

the attributes of some traditional and agile methodologies that are far and wide used in software development. We

have also discussed the strengths and weakness between the two opposing methodologies and provided the challenges

associated with implementing agile processes in the software industry.

KEYWORDS: waterfall model, agile model.

 INTRODUCTION
Software has been an indispensable part of modern

society for a long time. Several software development

methodologies are in use today. Various companies

have their own modified tactics for their software

enhancement but the majority speaks about two kinds

of methodologies: heavyweight and lightweight. The

software development life cycle (SDLC) is the process

consisting of a sequence of planned phases to develop

or to amend the software products. In this monograph

an overview of SDLC models is discussed.

Heavyweight methodologies, the most conventional

way of software development, assert their support to

comprehensive planning, thorough documentation,

and extensive design. On the other hand, the

lightweight methodologies also known as agile

modeling has gained considerable recognition from

the software engineering society in the last few years.

SDLC models should be chosen on the basis of

requirements and size of any project. The objective of

SDLC is to produce high trait software that will satisfy

the needs of customer and also provide a clear-cut idea

about the development phases to the customer as well

as the developer. The traditional life cycle is

essentially sequential. Some stages focus on the early

part of the project, while others occur toward the end.

To meet the demands of the current environment, a

new SDLC model needs to allow developers to

perform some tasks in different stages concurrently. In

this world of neck to neck competition, system

developers need the flexibility to respond rapidly to

environmental opportunities and threats even in the

midst of the project, for the project to be successful.

SDLC is a structure/basic building block defining

functions performed in individual steps.

Typically SDLC is completed in following stages:

1. Planning and analysis of requirements.

2. Defining requirements

3. Designing the software architecture.

4. Developing the product

5. Testing it.

6. Deployment in market & maintenance.

Characterstics of SDLC:

 Minimal expenditure

 Flexibility and feedback.

 Simultaneous tasks.

 Thorough analysis.

WATERFALL MODEL
The waterfall model is a sequential, down-flow model

often used in software development processes, it is

called so because all the phases of Analysis, Design,

Production/Implementation, Construction, Testing,

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [71]

and Maintenance are executed one by one and flow

downwards like a waterfall. Waterfall model is a

sequential and incremental development model. The

oldest of the SDLC’s and the finest known.

The chronological segments in Waterfall model are:

Requirement analysis and information gathering:

From top to bottom all the necessities of the system to

be developed are captured in this fragment and

documented in a prerequisite specification document.

System Design: System Design helps in specifying

hardware and also provide a virtual overview of the

system/software to be designed.

Implementation: With inputs from above phase, the

system is first moduled in small programs called units,

which are integrated in the coming step. Each program

is tested on a particular scale to which is referred to as

Unit Testing.

Integration and Testing: All the units developed in

the implementation phase are integrated into a system

after inspection of each unit. Post integration the entire

system is tested for any faults and malfunctions.

Deployment of system: The small units are merged

into one functional unit and are tested. Once the testing

is finished, the product is set up in the customer

environment or released into the market.

Maintenance: There are some concerns which come

up in the client atmosphere. To repair those issues

patches are released. Also to enhance the artifact some

better versions are released. Maintenance is done to

bring these changes in the customer environment.

Pros

 Prerequisite is clear before development

commences.

 Each phase is accomplished in specified

period of time after that it moves to next

phase.

 As it is a linear model, it’s simple to employ.

 The quantity of resources required to employ

this model are nominal.

 Each phase appropriate documentation is

followed for the eminence of the

development.

Cons

 Sarcastically, the biggest shortcoming is one

of its greatest benefits. You cannot go back a

step; if the design phase has gone erroneous,

things can get very problematical in the

implementation phase.

 Often, the client is not very precise of what

he exactly wants from the software. Any

changes that he reveals in between, may

cause a lot of confusion.

 Small alterations or errors that come up in the

completed software may cause a lot of

problems.

Best use of waterfall methodology can be done

when:

1. There is a clear depiction of what the final

product should be.

2. Clients won’t have the ability to change the

extent of the project once it has begun.

3. Characterization is more important than

speed.

Agile model:

Agile thought process had commenced early in the

software development and started becoming trendy

with time due to its elasticity and adaptability.

Iterative approach is taken and working software build

is conveyed after each iteration. Each build is

incremental in terms of characteristics; the final build

possesses all the features obligated by the customer.

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [72]

The most admired agile methods include Rational

Unified Process (1994), Scrum (1995), Crystal Clear,

Extreme Programming (1996), Adaptive Software

Development, Feature Driven Development, and

Dynamic Systems Development Method (DSDM)

(1995).

Following are the agile platform principles:

 Individuals and interactions - In agile

process, self-organization and enthusiasm are

important, as are interactions like co-location

and pair programming.

 Working software - Demo working software

is considered the best resource of

communication with the customer to

understand their condition, instead of just

relying on documentation.

 Customer collaboration - As the necessities

cannot be gathered absolutely at the time of

foundation of the project due to various

aspects, continuous customer interaction is

very vital to get proper product requirements.

 Responding to change - agile development is

paying attention on quick reaction to change

and incessant development.

Pros:

 Functionality can be developed rapidly and

verified side by side.

 Good model for environments that change

progressively.

 Little or no planning required, development

and deployment are carried out side by side.

Cons:

 Hard to maintain and sustain the needs,

because any of the step is not finished

actually.

 Documentation is very less hence individual

dependencies are increased.

 Depends heavily on interaction with

costumer so if costumer is not cleared then it

will create ambiguity between the

developers.

When should you use Agile methodology?

1. When rapid fabrication is more important

than the eminence of the product.

2. When clients will be proficient to change the

scope of the project.

3. When there isn’t a clear image of what the

final creation should look like.

4. When you have skilled developers who are

adaptable and capable to think

independently.

5. When the product is proposed for an industry

with rapidly varying standards.

Comparison between Waterfall and Agile

Methodologies:

Waterfall is defined as a sequential development

model with clearly defined deliverables for every

phase. Many industry practitioners are strict in

performing audit reviews to ensure that the project has

satisfied the input criteria before continuing to the next

phase. while, agile model is based on the adaptive

software development methods. It is flexible as well as

lucid i.e.it gives freedom to the client demanding for

the software. Based on some renown features a table

comparing waterfall and agile model is given below:

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [73]

AGILE WATERFALL

Architecture is informal and incremental. Architecture is very well documented &finalized before
coding starts.

Developers share possession of the code. Each developer is responsible for one area.

Continuous integration Integration executed at one end or after milestone

Focus is on completing stories (functionalities) in short iterations Focus is on completing modules (parts of the architecture)

at large milestones

Relies on engineering practices (TDD, refactoring design

patterns…)

Doesn’t necessarily rely on engineering practices

Light process and documentation Heavy process and documentation

Requires cross-trained developers, familiar with all vital

technologies.

Relies on a small group of architects/ designers to overview

the complete code, the rest of the team can be very

specialized.

Main roles: Developer Main role: architect, developer

Open door policy. Developers are encouraged to talk directly with

business, QA & management at any time. Everyone’s point of

view is considered.

Only a few developers, & some architects can contact some

business people. Communication happens mainly at the

beginning of the project & at the signposts.

CONCLUSION
This was about the SDLC models and the scenarios in

which these SDLC models are used. The information

in this paper will help the project developers to decide

which SDLC model would be suitable for their project

and it would also help the developers and testers to

understand basics of the development model being

used for their project. We have discussed both the

popular SDLC models in the industry, both traditional

and modern. This paper also gives an insight into the

pros and cons and the practical applications of the

SDLC models discussed. Waterfall is traditional

SDLC model and is of sequential type. Sequential

means that the next phase can start only after the

completion of first phase. Such models are suitable for

projects with very clear product requirements and

where the requirements will not change dynamically

during the course of project completion. Agile is the

most popular model used in the industry. Agile

introduces the concept of fast delivery to customers

using prototype approach. Agile divides the project

into small iterations with specific deliverable features.

Customer interaction is the backbone of Agile

methodology, and open communication with

minimum documentation are the typical features of

agile development environment.

MODEL/FEATURES WATERFALL MODEL AGILE MODEL

Requirement Specifications Beginning Frequently changed

Understanding Requirements Well Understood Well Understood

Cost Low Very High

Guarantee of Success Low Very High

Resource Control Yes No

Cost Control Yes Yes

Simplicity Simple Intricate

Risk Involvement High Reduced

Expertise Required High Very high

Changes Incorporated Difficult Difficult

Risk Analysis Only at beginning Yes

User Interaction Only at beginning High

Overlapping Phases No Such Phase Yes

Flexibility Rigid Highly Flexible

Maintenance Least Glamorous Promote Maintenance Ability

Integrity &Security Vital Obvious

Reusability Limited Reusable

Interface Minimal Model-driven

Documentation &Training required Vital Yes

Time Frame Long Least possible

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [74]

ACKNOWLEDGEMENT
We would like to gratefully and sincerely thank Mr.

Deepak Agrawal for his guidance and understanding.

His mentorship was paramount in providing a well

rounded experience consistent our long-term career

goals. He encouraged us to not only grow as an

experimentalist and an engineer but also as

independent thinker. We would also like to thank CSE

department, Acropolis Institute of Technology

&Research for their assistance and guidance in making

of this research paper and giving us the platform to do

so. Finally and importantly, we would like to thank our

parents. Their support, encouragement and quiet

patience helped us a lot in making of this report.

REFERENCES
1. Winston Royce, “Managing the

Development of Large Software Systems”,

Proc. Westcon, IEEE CS Press, 1970,

2. pp. 328-339.

3. 2 Standish Group International, Inc., “Chaos

Chronicles”, 1994,

4. http://www1.standishgroup.com//sample_res

earch/chaos_1994_1.php

5. 3 Kent Beck, “Extreme Programming

Explained: Embrace Change”, Addison-

Wesley, 2000, pp. 18-19.

6. 4 Ken Schwaber, Mike Beedle, “Agile

Software Development with Scrum”,

Prentice Hall, 2001, pp. 89-94

7. 5Standish Group International, Inc., “Chaos

Chronicals”, 1994,

8. http://www1.standishgroup.com//sample_res

earch/chaos_1994_1.php

9. 6 I. Nonaka, H. Takeuchi, “The New New

Product Development Game”, Harvard

Business Review, January 1986,

10. pp. 137-146.

11. 7 For more on how lean development

influences agile software development, see:

Mary Poppendieck, Tom

12. Poppendieck, “Lean Software Development

An Agile Toolkit”, Addison-Wesley, 2003.

13. 8 Craig Larman, Victor R. Basili, “Iterative

and Incremental Development: A Brief

History”, Computer, IEEE CS

14. Press, June 2004, p. 48.

15. 9 I. Nonaka, H. Takeuchi, “The New New

Product Development Game”, Harvard

Business Review, January 1986,

16. pp. 137-146.

17. 10 The Agile Manifesto is online at

http://www.agilemanifesto.org/

18. 11 Barry Boehm, “Software Engineering

Economics”, Prentice Hall PTR, 1981.

19. 12 Kent Beck, “Extreme Programming

Explained: Embrace Change”, Addison-

Wesley, 2000.

20. 13 Reexamining the Cost of Change Curve,

year 2000, by Alistair Cockburn; XP

Magazine, September 2000.

21. 14 Examining the Cost of Change Curve, by

Scott Ambler; Agile Modeling Essays

excerpted from the book “The

22. Object Primer, 3rd ed.: Agile Model-Driven

Development with UML2”; by Scott Ambler,

Cambridge University

23. Press, 2004.

24. 15 Martin Fowler, “Is Design Dead”,

http://martinfowler.com/articles/designDead.

html , 2004.

25. 16 Ken Schwaber, Mike Beedle, “Agile

Software Development with Scrum”,

Prentice Hall, 2001, pp. 100-101

26. 17 In fact, it is debatable whether Quality is

really an adjustable factor. As professionals,

software developers find it

27. very objectionable when asked to skimp on

quality. Surgeons or lawyers would be sued

for malpractice, and for the

28. same ethical implications software

developers resent this charge. Software

developers should always aim for high

29. quality software, period.

30. 18 Kent Beck, “Extreme Programming

Explained: Embrace Change”, Addison-

Wesley, 2000, pp. 15-19.

31. 19 The Scrum Agile method has its roots in

the Nonaka-Takeuchi article referenced

above.

32. 20 Mary Poppendieck, Tom Poppendieck,

“Lean Software Development An Agile

Toolkit”, Addison-Wesley, 2003,

33. p 28.

34. 21 Jim Johnson, “ROI, It’s Your Job!”,

Published Keynote Third International

Conference on Extreme Programming

35. 2002.

36. 22 Mary Poppendieck, Tom Poppendieck,

“Lean Software Development An Agile

Toolkit”, Addison-Wesley, 2003,

37. p 32.

http://www.ijesrt.com/
http://www1.standishgroup.com/sample_research/chaos_1994_1.php
http://www1.standishgroup.com/sample_research/chaos_1994_1.php
http://www1.standishgroup.com/sample_research/chaos_1994_1.php
http://www1.standishgroup.com/sample_research/chaos_1994_1.php
http://www.agilemanifesto.org/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [75]

38. 23 Standish Group International, Inc.,

“Chaos Chronicals”, 2004.

39. 24 “Standish: Project Success Rates

Improved Over 10 Years”, Software

Magazine and Weisner Publishing,

40. http://www.softwaremag.com/L.cfm?Doc=n

ewsletter/2004-01-15/Standish.

41. 25 Software architect Michael James has a

semi-serious theory that “test-only”

development will soon be feasible

42. with the advances in cheap, clustered

supercomputing. Developers write only

robust tests and supercomputers will

43. write and compile code until all tests pass.

44. [1] Laura C. Rodriguez Martinez, Manuel

Mora ,Francisco,J.Alvarez, “A

Descriptive/Comparative Study of the

Evolution of Process Models of Software

Development Life Cycles”, Proceedings of

the 2009 Mexican International Conference

on Computer Science IEEE Computer

Society Washington, DC, USA, 2009.

45. [2] Jovanovich, D., Dogsa, T.,“Comparison

of software development models,”

Proceedings of the 7th International

Conference on, 11-13 June 2003, ConTEL

2003, pp. 587-592.

46. [3] A. M. Davis, H. Bersoff, E. R. Comer, “A

Strategy for Comparing Alternative Software

Development Life Cycle Models”, Journal

IEEE Transactions on Software Engineering

,Vol. 14, Issue 10, 1988

47. [4] Sharma, B.; Sharma. N, “Software

Process Improvement: A Comparative

Analysis of SPI models”, Emerging Trends in

Engineering and Technology (ICETET),

2009 2nd International Conference on,16-18,

2009, pp. 1019-1024

48. [5] Maglyas, A.;Nikula, U.; Smolander,

T.,”Comparison of two models of success

prediction in software development

projects”, Software Engineering Conference

(CEE-SECR), 2010 6th Central and Eastern

European on 13-15 Oct. 2010, pp. 43-49.

49. [6] Osborn, C. SDLC, JAD, RAD,"Center for

Information Management Studies", 2001.

50. [7] Rothi, J.,Yen, D, "System Analysis and

Design in End User Developed

Applications", Journal of Information

Systems Education, 1989.

51. [8] Fowler, M. (2000), "Put Your Process on

a Diet", Software Development".

http://www.ijesrt.com/
http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish
http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish

